Провод закреплен на опорах в точках А и В. Высота закрепления пусть будет одинакова.
Провод провисает под действием собственного веса и принимает форму гибкой нити.
Напряжение в каждой точке провода определяется растяжением и направлено по касательной к данной точке.
Уравнение гибкой нити:
(1)
– половина длины провода в пролёте
– расстояние низшей точки провода до оси «»
– текущая координата
Ось «» - ось симметрии. Положение оси «» выберем следующим образом: предположим, что в точке «В» идеальный блок и в точке «В» провод перекинут через блок и свободно повисает за блоком. Длина провисающего провода выбирается, чтобы вес его уравновесил бы тяжение провода (длина эта – «»).
(2)
таким образом
(3)
Зная тяжение можно определить напряжения.
то есть (поделили (3 ) на ).
Таким образом, зная напряжение в низшей точке провода () можно определить любое напряжение, в любой другой точке.
( от незначительно отличается, особенно в равнинной местности).
Определим стрелу провеса провода.
Из уравнения (2) запишем значение :
, или Выражение для определения стрелы провеса определим, разложив в ряд первое уравнение системы (1). Вместо можем сразу подставить его значение
, но с другой стороны:
Приравняем правые части уравнений и подставим значение (половина длины пролёта (для точки «В»)); получим:
Можно определить стрелу провеса.
Для ее определения достаточно иметь первый член уравнения
Определим длину провода в пролёте, разложив в ряд второе уравнение системы (1):
(; )
Итак,- длина провода в пролёте.